java.lang.Object
org.flag4j.linalg.ops.sparse.coo.real.RealSparseMatrixMultiplication
This class contains low level implementations of matrix multiplication for real sparse matrices.
WARNING: This class does not provide sanity checks.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic double[]
concurrentStandard
(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.static double[]
concurrentStandardVector
(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.static double[]
standard
(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a standard algorithm.static double[]
standardVector
(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm.
-
Constructor Details
-
RealSparseMatrixMultiplication
private RealSparseMatrixMultiplication()
-
-
Method Details
-
standard
public static double[] standard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a standard algorithm.- Parameters:
src1
- Non-zero entries of the first sparse matrix.rowIndices1
- Row indices of non-zero entries for the first sparse matrix.colIndices1
- Column indices of non-zero entries for the first sparse matrix.shape1
- Shape of the first sparse matrix.src2
- Non-zero entries of the second sparse matrix.rowIndices2
- Row indices of non-zero entries for the second sparse matrix.colIndices2
- column indices of non-zero entries for the second sparse matrix.shape2
- Shape of the second sparse matrix.- Returns:
- The result of the matrix multiplication stored in a dense matrix.
-
concurrentStandard
public static double[] concurrentStandard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.
NOTE: Caution should be exercised when using this method. It is rarely faster thanstandard(double[], int[], int[], Shape, double[], int[], int[], Shape)
- Parameters:
src1
- Non-zero entries of the first sparse matrix.rowIndices1
- Row indices of non-zero entries for the first sparse matrix.colIndices1
- Column indices of non-zero entries for the first sparse matrix.shape1
- Shape of the first sparse matrix.src2
- Non-zero entries of the second sparse matrix.rowIndices2
- Row indices of non-zero entries for the second sparse matrix.colIndices2
- column indices of non-zero entries for the second sparse matrix.shape2
- Shape of the second sparse matrix.- Returns:
- The result of the matrix multiplication stored in a dense matrix.
-
standardVector
public static double[] standardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm.- Parameters:
src1
- Non-zero entries of the first sparse matrix.rowIndices1
- Row indices of non-zero entries for the first sparse matrix.colIndices1
- Column indices of non-zero entries for the first sparse matrix.shape1
- Shape of the first sparse matrix.src2
- Non-zero entries of the second sparse matrix.indices
- Indices of non-zero entries in the sparse vector.- Returns:
- The result of the matrix-vector multiplication stored in a dense matrix.
-
concurrentStandardVector
public static double[] concurrentStandardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.- Parameters:
src1
- Non-zero entries of the first sparse matrix.rowIndices1
- Row indices of non-zero entries for the first sparse matrix.colIndices1
- Column indices of non-zero entries for the first sparse matrix.shape1
- Shape of the first sparse matrix.src2
- Non-zero entries of the second sparse matrix.indices
- Indices of non-zero entries in the sparse vector.- Returns:
- The result of the matrix-vector multiplication stored in a dense matrix.
-