Uses of Class
org.flag4j.arrays.sparse.CooSemiringMatrix
Packages that use CooSemiringMatrix
Package
Description
Provides implementations for dense tensors, matrices, and vectors.
Contains implementations for sparse tensors, matrices, and vectors.
-
Uses of CooSemiringMatrix in org.flag4j.arrays.backend.smart_visitors
Methods in org.flag4j.arrays.backend.smart_visitors with parameters of type CooSemiringMatrixModifier and TypeMethodDescription<U extends Semiring<U>>
MatrixMixin<?, ?, ?, ?> AddVisitor.visit
(CooSemiringMatrix<U> matrix) <U extends Semiring<U>>
MatrixMixin<?, ?, ?, ?> DivVisitor.visit
(CooSemiringMatrix<U> matrix) <U extends Semiring<U>>
MatrixMixin<?, ?, ?, ?> ElemMultVisitor.visit
(CooSemiringMatrix<U> matrix) <U extends Semiring<U>>
MatrixMixin<?, ?, ?, ?> MatMultVisitor.visit
(CooSemiringMatrix<U> matrix) MatrixVisitor.visit
(CooSemiringMatrix<U> matrix) <U extends Semiring<U>>
MatrixMixin<?, ?, ?, ?> SubVisitor.visit
(CooSemiringMatrix<U> matrix) -
Uses of CooSemiringMatrix in org.flag4j.arrays.dense
Methods in org.flag4j.arrays.dense that return CooSemiringMatrixModifier and TypeMethodDescriptionprotected CooSemiringMatrix
<T> SemiringMatrix.makeLikeCooMatrix
(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix which is of a similar type as this dense matrix.SemiringMatrix.toCoo()
Converts this dense tensor to an equivalent sparse COO tensor.SemiringMatrix.toCoo
(double estimatedSparsity) Converts this matrix to an equivalent sparse COO matrix. -
Uses of CooSemiringMatrix in org.flag4j.arrays.sparse
Subclasses with type arguments of type CooSemiringMatrix in org.flag4j.arrays.sparseModifier and TypeClassDescriptionclass
CooSemiringMatrix<T extends Semiring<T>>
Represents a sparse matrix whose non-zero elements are stored in Coordinate List (COO) format, with all data elements belonging to a specifiedSemiring
type.class
CooSemiringVector<T extends Semiring<T>>
Represents a sparse vector whose non-zero elements are stored in Coordinate List (COO) format, with all data elements belonging to a specifiedSemiring
type.Methods in org.flag4j.arrays.sparse that return CooSemiringMatrixModifier and TypeMethodDescriptionCooSemiringMatrix.div
(CooSemiringMatrix<T> b) Computes the element-wise quotient of two matrices.CsrSemiringMatrix.makeLikeCooMatrix
(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.CooSemiringVector.makeLikeMatrix
(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.CooSemiringMatrix.makeLikeTensor
(Shape shape, List<T> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.CooSemiringMatrix.makeLikeTensor
(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshape
anddata
.CooSemiringMatrix.makeLikeTensor
(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.CooSemiringMatrix.sub
(CooSemiringMatrix<T> b) Computes the element-wise difference of two matrices.CsrSemiringMatrix.toCoo()
Converts this sparse CSR matrix to an equivalent sparse COO matrix.CooSemiringTensor.toMatrix()
Converts this tensor to an equivalent matrix.Converts this tensor to a matrix with the specified shape.CooSemiringVector.toMatrix
(boolean columVector) Converts a vector to an equivalent matrix representing either a row or column vector.Methods in org.flag4j.arrays.sparse with parameters of type CooSemiringMatrixModifier and TypeMethodDescriptionCooSemiringMatrix.div
(CooSemiringMatrix<T> b) Computes the element-wise quotient of two matrices.CooSemiringMatrix.sub
(CooSemiringMatrix<T> b) Computes the element-wise difference of two matrices.CooSemiringMatrix.tensorDot
(CooSemiringMatrix<T> src2, int[] aAxes, int[] bAxes) Computes the tensor contraction of this tensor with a specified tensor over the specified set of axes.