Package com.jml.neural_network.layers.initilizers
package com.jml.neural_network.layers.initilizers
A package containing an interface for specifying a layer parameter initializer. Also includes
various built-in initializers. These initializers can be used to set the staring values of the weights / bias terms
(or any other trainable parameters in the layer) before training.
-
ClassDescription
layer
parameter initializer to produce a constant value.{layer
parameter initializer to produce random values from a truncated normal distribution with standard deviation std = sqrt(2 / (fanIn + fanOut)) and mean of 0 where fanIn is the input dimension for the layer and fanOut is the output dimension for the layer.layer
parameter initializer to produce random values from a clipped uniform distribution in [-lim, lim] where lim = sqrt(6 / (fanIn + fanOut)), fanIn is the input dimension for the layer, and fanOut is the output dimension for the layer.layer
parameter initializer to produce random values from a normal distribution with standard deviation std = sqrt(2 / fanIn) and mean of 0 where fanIn is the input dimension for the layer.layer
parameter initializer to produce random values from a clipped uniform distribution in [-lim, lim] where lim = sqrt(6 / fanIn), fanIn is the input dimension for the layer.layer
parameter initializer to produce ones.layer
parameter initializer to produce random orthogonal matrix.layer
parameter initializer to produce random values from a normal distribution.layer
parameter initializer to produce random values from a uniform distribution.layer
parameter initializer to produce zeros.