Index
All Classes|All Packages|Constant Field Values
L
- l1(double[]) - Static method in class com.jml.preprocessing.Normalize
-
Normalizes the data by subtracting the mean and dividing by the L1-norm.
- l2(double[]) - Static method in class com.jml.preprocessing.Normalize
-
Normalizes the data by subtracting the mean and dividing by the L2-norm.
- l2(double[][]) - Static method in class com.jml.preprocessing.Normalize
-
Normalizes each column of the data by subtracting the mean of that column and dividing by the L2-norm of that column.
- LAYER - Enum constant in enum class com.jml.neural_network.ModelTags
- LAYER_TYPE - Variable in class com.jml.neural_network.layers.Dense
- LAYER_TYPE - Variable in class com.jml.neural_network.layers.Dropout
- LAYER_TYPE - Variable in class com.jml.neural_network.layers.Linear
- linear - Static variable in class com.jml.neural_network.activations.Activations
-
A pre-defined instance of the linear activation function.
- linear() - Static method in class com.jml.neural_network.activations.Activations
-
Creates and returns a new instacne of the linear activation function.
- Linear - Class in com.jml.neural_network.activations
-
The linear activation function.
- Linear - Class in com.jml.neural_network.layers
-
Simple fully-connected linear layer.
- Linear() - Constructor for class com.jml.neural_network.activations.Linear
- Linear(int) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network. - Linear(int, int) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
- Linear(int, int, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
- Linear(int, int, Initializer, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
- Linear(int, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network. - Linear(int, Initializer, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
-
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network. - LINEAR_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
- LINEAR_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
- LinearModelTags - Enum Class in com.jml.linear_models
- LinearRegression - Class in com.jml.linear_models
-
Model for ordinary least squares linear regression of one variable.
LinearRegression fits a model y = b0 + b1x to the datasets by minimizing the residuals of the sum of squares between the values in the target dataset and the values predicted by the model. - LinearRegression() - Constructor for class com.jml.linear_models.LinearRegression
- LinearRegressionSGD - Class in com.jml.linear_models
-
Model for least squares linear regression of one variable by stochastic gradient descent.
LinearRegressionSGD fits a model y = b0 + b1x to the datasets by minimizing the residuals of the sum of squares between the values in the target dataset and the values predicted by the model. - LinearRegressionSGD() - Constructor for class com.jml.linear_models.LinearRegressionSGD
-
Creates a
LinearRegressionSGD
model.
This will use default settings for gradient descent: - LinearRegressionSGD(double) - Constructor for class com.jml.linear_models.LinearRegressionSGD
-
Creates a
LinearRegressionSGD
model. - LinearRegressionSGD(double, int) - Constructor for class com.jml.linear_models.LinearRegressionSGD
-
Creates a
LinearRegressionSGD
model. - LinearRegressionSGD(double, int, double) - Constructor for class com.jml.linear_models.LinearRegressionSGD
-
Creates a
LinearRegressionSGD
model. - LinearRegressionSGD(int) - Constructor for class com.jml.linear_models.LinearRegressionSGD
-
Creates a
LinearRegressionSGD
model. - load(String) - Static method in class com.jml.core.Model
-
Loads a model from specified file path including extension.
Models must be saved as an MDL file (i.e. - loadFeaturesAndTargets(String) - Static method in class com.jml.core.DataLoader
-
Loads targets and features from a csv file.
- loadFeaturesAndTargets(String, int[], int[]) - Static method in class com.jml.core.DataLoader
-
Loads targets and features from a csv file.
The csv file is assumed to have one data sample per row. - LOGISTIC_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
- LogisticRegression - Class in com.jml.classifiers
-
A logistic regression model.
- LogisticRegression() - Constructor for class com.jml.classifiers.LogisticRegression
-
Creates a logistic regression model.
- LogisticRegression(double) - Constructor for class com.jml.classifiers.LogisticRegression
-
Creates a logistic regression model.
- LogisticRegression(double, int) - Constructor for class com.jml.classifiers.LogisticRegression
-
Creates a logistic regression model.
- LogisticRegression(double, int, double) - Constructor for class com.jml.classifiers.LogisticRegression
-
Creates a logistic regression model.
- LossFunctions - Class in com.jml.losses
-
This class contains lambda functions for various loss functions including:
All Classes|All Packages|Constant Field Values