Index

A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values

L

l1(double[]) - Static method in class com.jml.preprocessing.Normalize
Normalizes the data by subtracting the mean and dividing by the L1-norm.
l2(double[]) - Static method in class com.jml.preprocessing.Normalize
Normalizes the data by subtracting the mean and dividing by the L2-norm.
l2(double[][]) - Static method in class com.jml.preprocessing.Normalize
Normalizes each column of the data by subtracting the mean of that column and dividing by the L2-norm of that column.
LAYER - Enum constant in enum class com.jml.neural_network.ModelTags
 
LAYER_TYPE - Variable in class com.jml.neural_network.layers.Dense
 
LAYER_TYPE - Variable in class com.jml.neural_network.layers.Dropout
 
LAYER_TYPE - Variable in class com.jml.neural_network.layers.Linear
 
linear - Static variable in class com.jml.neural_network.activations.Activations
A pre-defined instance of the linear activation function.
linear() - Static method in class com.jml.neural_network.activations.Activations
Creates and returns a new instacne of the linear activation function.
Linear - Class in com.jml.neural_network.activations
The linear activation function.
Linear - Class in com.jml.neural_network.layers
Simple fully-connected linear layer.
Linear() - Constructor for class com.jml.neural_network.activations.Linear
 
Linear(int) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network.
Linear(int, int) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
Linear(int, int, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
Linear(int, int, Initializer, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
Linear(int, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network.
Linear(int, Initializer, Initializer) - Constructor for class com.jml.neural_network.layers.Linear
Creates a Linear layer with specified input and output dimensions.
NOTE: this constructor infers the input dimension from the previous layer in the network.
LINEAR_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
 
LINEAR_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
 
LinearModelTags - Enum Class in com.jml.linear_models
 
LinearRegression - Class in com.jml.linear_models
Model for ordinary least squares linear regression of one variable.

LinearRegression fits a model y = b0 + b1x to the datasets by minimizing the residuals of the sum of squares between the values in the target dataset and the values predicted by the model.
LinearRegression() - Constructor for class com.jml.linear_models.LinearRegression
 
LinearRegressionSGD - Class in com.jml.linear_models
Model for least squares linear regression of one variable by stochastic gradient descent.

LinearRegressionSGD fits a model y = b0 + b1x to the datasets by minimizing the residuals of the sum of squares between the values in the target dataset and the values predicted by the model.
LinearRegressionSGD() - Constructor for class com.jml.linear_models.LinearRegressionSGD
Creates a LinearRegressionSGD model.
This will use default settings for gradient descent:
LinearRegressionSGD(double) - Constructor for class com.jml.linear_models.LinearRegressionSGD
Creates a LinearRegressionSGD model.
LinearRegressionSGD(double, int) - Constructor for class com.jml.linear_models.LinearRegressionSGD
Creates a LinearRegressionSGD model.
LinearRegressionSGD(double, int, double) - Constructor for class com.jml.linear_models.LinearRegressionSGD
Creates a LinearRegressionSGD model.
LinearRegressionSGD(int) - Constructor for class com.jml.linear_models.LinearRegressionSGD
Creates a LinearRegressionSGD model.
load(String) - Static method in class com.jml.core.Model
Loads a model from specified file path including extension.
Models must be saved as an MDL file (i.e.
loadFeaturesAndTargets(String) - Static method in class com.jml.core.DataLoader
Loads targets and features from a csv file.
loadFeaturesAndTargets(String, int[], int[]) - Static method in class com.jml.core.DataLoader
Loads targets and features from a csv file.

The csv file is assumed to have one data sample per row.
LOGISTIC_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
 
LogisticRegression - Class in com.jml.classifiers
A logistic regression model.
LogisticRegression() - Constructor for class com.jml.classifiers.LogisticRegression
Creates a logistic regression model.
LogisticRegression(double) - Constructor for class com.jml.classifiers.LogisticRegression
Creates a logistic regression model.
LogisticRegression(double, int) - Constructor for class com.jml.classifiers.LogisticRegression
Creates a logistic regression model.
LogisticRegression(double, int, double) - Constructor for class com.jml.classifiers.LogisticRegression
Creates a logistic regression model.
LossFunctions - Class in com.jml.losses
This class contains lambda functions for various loss functions including:
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values