Index
All Classes|All Packages|Constant Field Values
M
- max(double...) - Static method in class com.jml.core.Stats
-
Finds the maximum value in a dataset.
- mean(double...) - Static method in class com.jml.core.Stats
-
Computes the arithmetic mean.
- meanNormalize(double[]) - Static method in class com.jml.preprocessing.Normalize
-
Applies meanNormalize normalization to the data.
- median(double...) - Static method in class com.jml.core.Stats
-
Computes the median.
- Metrics - Class in com.jml.core
- min(double...) - Static method in class com.jml.core.Stats
-
Finds the minimum value in a dataset.
- minIndex(double[]) - Static method in class com.jml.core.Stats
-
Finds index of minimum value in an array.
- minIndices(double[], int) - Static method in class com.jml.core.Stats
-
Finds indices of the k smallest values in an array.
- minMaxScale(double[]) - Static method in class com.jml.preprocessing.Normalize
-
Applies min-max feature scaling to data.
- minMaxScale(double[], double, double) - Static method in class com.jml.preprocessing.Normalize
-
Applies min-max feature scaling to data.
- mode(double...) - Static method in class com.jml.core.Stats
-
Computes the mode of a dataset.
- Model<X,Y> - Class in com.jml.core
-
This interface specifies the requirements for a machine learning model.
- Model() - Constructor for class com.jml.core.Model
- MODEL_TYPE - Enum constant in enum class com.jml.classifiers.ClassifierTags
- MODEL_TYPE - Enum constant in enum class com.jml.linear_models.LinearModelTags
- MODEL_TYPE - Enum constant in enum class com.jml.neural_network.ModelTags
- ModelTags - Enum Class in com.jml.neural_network
- ModelTypes - Enum Class in com.jml.core
- Momentum - Class in com.jml.optimizers
-
The momentum based gradient descent optimizer.
- Momentum(double) - Constructor for class com.jml.optimizers.Momentum
-
Creates a Momentum optimizer with specified learning rate.
- Momentum(double, double) - Constructor for class com.jml.optimizers.Momentum
-
Creates a Momentum optimizer with specified learning rate and momentum.
- mse - Static variable in class com.jml.losses.LossFunctions
-
The sum of mean squared-errors loss function.
That ismse = (1/n)*sum(xi - yi)2
wherex
andy
are datasets of lengthn
, andx
is the actual data andy
is the predicted data. - MULTIPLE_LINEAR_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
- MULTIPLE_LINEAR_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
- MultipleLinearRegression - Class in com.jml.linear_models
-
Model for least squares linear regression of multiple variables by least squares.
MultipleLinearRegression fits a model y = b0 + b1x1 + ... - MultipleLinearRegression() - Constructor for class com.jml.linear_models.MultipleLinearRegression
- MultipleLinearRegressionSGD - Class in com.jml.linear_models
-
Model for least squares linear regression of multiple variables by stochastic gradient descent.
MultipleLinearRegressionSGD fits a model y = b0 + b1x1 + ... - MultipleLinearRegressionSGD() - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
-
Creates a
MultipleLinearRegressionSGD
model. - MultipleLinearRegressionSGD(double) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
-
Creates a
MultipleLinearRegressionSGD
model. - MultipleLinearRegressionSGD(double, int) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
-
Creates a
MultipleLinearRegressionSGD
model. - MultipleLinearRegressionSGD(double, int, double) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
-
Creates a
MultipleLinearRegressionSGD
model. - MultipleLinearRegressionSGD(int) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
-
Creates a
MultipleLinearRegressionSGD
model.
All Classes|All Packages|Constant Field Values