Index

A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values

M

max(double...) - Static method in class com.jml.core.Stats
Finds the maximum value in a dataset.
mean(double...) - Static method in class com.jml.core.Stats
Computes the arithmetic mean.
meanNormalize(double[]) - Static method in class com.jml.preprocessing.Normalize
Applies meanNormalize normalization to the data.
median(double...) - Static method in class com.jml.core.Stats
Computes the median.
Metrics - Class in com.jml.core
 
min(double...) - Static method in class com.jml.core.Stats
Finds the minimum value in a dataset.
minIndex(double[]) - Static method in class com.jml.core.Stats
Finds index of minimum value in an array.
minIndices(double[], int) - Static method in class com.jml.core.Stats
Finds indices of the k smallest values in an array.
minMaxScale(double[]) - Static method in class com.jml.preprocessing.Normalize
Applies min-max feature scaling to data.
minMaxScale(double[], double, double) - Static method in class com.jml.preprocessing.Normalize
Applies min-max feature scaling to data.
mode(double...) - Static method in class com.jml.core.Stats
Computes the mode of a dataset.
Model<X,​Y> - Class in com.jml.core
This interface specifies the requirements for a machine learning model.
Model() - Constructor for class com.jml.core.Model
 
MODEL_TYPE - Enum constant in enum class com.jml.classifiers.ClassifierTags
 
MODEL_TYPE - Enum constant in enum class com.jml.linear_models.LinearModelTags
 
MODEL_TYPE - Enum constant in enum class com.jml.neural_network.ModelTags
 
ModelTags - Enum Class in com.jml.neural_network
 
ModelTypes - Enum Class in com.jml.core
 
Momentum - Class in com.jml.optimizers
The momentum based gradient descent optimizer.
Momentum(double) - Constructor for class com.jml.optimizers.Momentum
Creates a Momentum optimizer with specified learning rate.
Momentum(double, double) - Constructor for class com.jml.optimizers.Momentum
Creates a Momentum optimizer with specified learning rate and momentum.
mse - Static variable in class com.jml.losses.LossFunctions
The sum of mean squared-errors loss function.
That is mse = (1/n)*sum(xi - yi)2 where x and y are datasets of length n, and x is the actual data and y is the predicted data.
MULTIPLE_LINEAR_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
 
MULTIPLE_LINEAR_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
 
MultipleLinearRegression - Class in com.jml.linear_models
Model for least squares linear regression of multiple variables by least squares.

MultipleLinearRegression fits a model y = b0 + b1x1 + ...
MultipleLinearRegression() - Constructor for class com.jml.linear_models.MultipleLinearRegression
 
MultipleLinearRegressionSGD - Class in com.jml.linear_models
Model for least squares linear regression of multiple variables by stochastic gradient descent.

MultipleLinearRegressionSGD fits a model y = b0 + b1x1 + ...
MultipleLinearRegressionSGD() - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
MultipleLinearRegressionSGD(double) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
MultipleLinearRegressionSGD(double, int) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
MultipleLinearRegressionSGD(double, int, double) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
MultipleLinearRegressionSGD(int) - Constructor for class com.jml.linear_models.MultipleLinearRegressionSGD
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values