Index

A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values

P

P - Enum constant in enum class com.jml.classifiers.ClassifierTags
 
PARAMETERS - Enum constant in enum class com.jml.linear_models.LinearModelTags
 
Perceptron - Class in com.jml.linear_models
A perceptron is a linear model that is equivalent to a single layer neural network.

When a perceptron model is saved, it will be saved as a neural network model.
Perceptron() - Constructor for class com.jml.linear_models.Perceptron
Creates a perceptron with default hyper-parameters.
Perceptron(double, int, int, double) - Constructor for class com.jml.linear_models.Perceptron
Creates a perceptron with specified hyper-parameters and the sigmoid activation function.
Perceptron(double, int, int, double, ActivationFunction) - Constructor for class com.jml.linear_models.Perceptron
Creates a perceptron with specified hyper-parameters and activation function.
PERCEPTRON - Enum constant in enum class com.jml.core.ModelTypes
 
POLYNOMIAL_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
 
POLYNOMIAL_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
 
PolynomialRegression - Class in com.jml.linear_models
Model for least squares linear regression of polynomials.

PolynomialRegression fits a model y = b0 + b1x + b2x2 + ...
PolynomialRegression() - Constructor for class com.jml.linear_models.PolynomialRegression
Creates a default polynomial regression model.
PolynomialRegression(int) - Constructor for class com.jml.linear_models.PolynomialRegression
Creates a polynomial regression model with specified degree.
PolynomialRegressionSGD - Class in com.jml.linear_models
Model for least squares regression of polynomials using Stochastic Gradient Descent.

PolynomialRegression fits a model y = b0 + b1x + b2x2 + ...
PolynomialRegressionSGD() - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
Creates a PolynomialRegressionSGD model.
PolynomialRegressionSGD(int) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
Creates a PolynomialRegressionSGD model.
PolynomialRegressionSGD(int, double) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
Creates a PolynomialRegressionSGD model.
PolynomialRegressionSGD(int, double, int) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
Creates a PolynomialRegressionSGD model.
PolynomialRegressionSGD(int, double, int, double) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
Creates a PolynomialRegressionSGD model.
predict(double[]) - Method in class com.jml.linear_models.PolynomialRegression
Uses fitted/trained model to make prediction on single feature.
predict(double[][]) - Method in class com.jml.classifiers.KNearestNeighbors
Uses fitted/trained model to make prediction on single feature.
predict(double[][]) - Method in class com.jml.classifiers.LogisticRegression
Uses fitted/trained model to make prediction on single feature.
predict(double[][]) - Method in class com.jml.linear_models.MultipleLinearRegression
Uses fitted/trained model to make prediction on single feature.
predict(double[][]) - Method in class com.jml.linear_models.Perceptron
Uses fitted/trained model to make prediction on single feature.
predict(double[][]) - Method in class com.jml.neural_network.NeuralNetwork
Uses fitted/trained model to make predictions on features.
predict(Matrix, Matrix) - Method in class com.jml.classifiers.KNearestNeighbors
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.classifiers.LogisticRegression
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.core.Model
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.linear_models.MultipleLinearRegression
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.linear_models.Perceptron
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.linear_models.PolynomialRegression
Makes a prediction using a model by specifying the parameters of the model.
predict(Matrix, Matrix) - Method in class com.jml.neural_network.NeuralNetwork
Makes a prediction using a model by specifying the parameters of the model.
predict(X) - Method in class com.jml.core.Model
Uses fitted/trained model to make prediction on single feature.
PROBABILITY - Enum constant in enum class com.jml.neural_network.ModelTags
 
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values