Index
All Classes|All Packages|Constant Field Values
P
- P - Enum constant in enum class com.jml.classifiers.ClassifierTags
- PARAMETERS - Enum constant in enum class com.jml.linear_models.LinearModelTags
- Perceptron - Class in com.jml.linear_models
-
A perceptron is a linear model that is equivalent to a single layer neural network.
When a perceptron model is saved, it will be saved as a neural network model. - Perceptron() - Constructor for class com.jml.linear_models.Perceptron
-
Creates a perceptron with default hyper-parameters.
- Perceptron(double, int, int, double) - Constructor for class com.jml.linear_models.Perceptron
-
Creates a perceptron with specified hyper-parameters and the sigmoid activation function.
- Perceptron(double, int, int, double, ActivationFunction) - Constructor for class com.jml.linear_models.Perceptron
-
Creates a perceptron with specified hyper-parameters and activation function.
- PERCEPTRON - Enum constant in enum class com.jml.core.ModelTypes
- POLYNOMIAL_REGRESSION - Enum constant in enum class com.jml.core.ModelTypes
- POLYNOMIAL_REGRESSION_SGD - Enum constant in enum class com.jml.core.ModelTypes
- PolynomialRegression - Class in com.jml.linear_models
-
Model for least squares linear regression of polynomials.
PolynomialRegression fits a model y = b0 + b1x + b2x2 + ... - PolynomialRegression() - Constructor for class com.jml.linear_models.PolynomialRegression
-
Creates a default polynomial regression model.
- PolynomialRegression(int) - Constructor for class com.jml.linear_models.PolynomialRegression
-
Creates a polynomial regression model with specified degree.
- PolynomialRegressionSGD - Class in com.jml.linear_models
-
Model for least squares regression of polynomials using
Stochastic Gradient Descent
.
PolynomialRegression fits a model y = b0 + b1x + b2x2 + ... - PolynomialRegressionSGD() - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
-
Creates a
PolynomialRegressionSGD
model. - PolynomialRegressionSGD(int) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
-
Creates a
PolynomialRegressionSGD
model. - PolynomialRegressionSGD(int, double) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
-
Creates a
PolynomialRegressionSGD
model. - PolynomialRegressionSGD(int, double, int) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
-
Creates a
PolynomialRegressionSGD
model. - PolynomialRegressionSGD(int, double, int, double) - Constructor for class com.jml.linear_models.PolynomialRegressionSGD
-
Creates a
PolynomialRegressionSGD
model. - predict(double[]) - Method in class com.jml.linear_models.PolynomialRegression
-
Uses fitted/trained model to make prediction on single feature.
- predict(double[][]) - Method in class com.jml.classifiers.KNearestNeighbors
-
Uses fitted/trained model to make prediction on single feature.
- predict(double[][]) - Method in class com.jml.classifiers.LogisticRegression
-
Uses fitted/trained model to make prediction on single feature.
- predict(double[][]) - Method in class com.jml.linear_models.MultipleLinearRegression
-
Uses fitted/trained model to make prediction on single feature.
- predict(double[][]) - Method in class com.jml.linear_models.Perceptron
-
Uses fitted/trained model to make prediction on single feature.
- predict(double[][]) - Method in class com.jml.neural_network.NeuralNetwork
-
Uses fitted/trained model to make predictions on features.
- predict(Matrix, Matrix) - Method in class com.jml.classifiers.KNearestNeighbors
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.classifiers.LogisticRegression
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.core.Model
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.linear_models.MultipleLinearRegression
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.linear_models.Perceptron
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.linear_models.PolynomialRegression
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(Matrix, Matrix) - Method in class com.jml.neural_network.NeuralNetwork
-
Makes a prediction using a model by specifying the parameters of the model.
- predict(X) - Method in class com.jml.core.Model
-
Uses fitted/trained model to make prediction on single feature.
- PROBABILITY - Enum constant in enum class com.jml.neural_network.ModelTags
All Classes|All Packages|Constant Field Values