Index
All Classes|All Packages|Constant Field Values
G
- genRandBoolean(double) - Static method in class com.jml.core.Stats
-
Generates a random boolean with a specified probability of being true.
- getBlock() - Method in class com.jml.core.Block
-
Gets the markup format of the block.
- getDetails() - Method in interface com.jml.neural_network.layers.BaseLayer
-
Constructs a string containing this all details of the model pertinent for saving the model to a file.
- getDetails() - Method in class com.jml.neural_network.layers.Dense
-
Constructs a string containing this all details of the model pertinent for saving the model to a file.
- getDetails() - Method in class com.jml.neural_network.layers.Dropout
-
Constructs a string containing this all details of the model pertinent for saving the model to a file.
- getDetails() - Method in class com.jml.neural_network.layers.Linear
-
Constructs a string containing this all details of the model pertinent for saving the model to a file.
- getDetails() - Method in class com.jml.optimizers.Adam
-
Gets the details of this optimizer.
- getDetails() - Method in class com.jml.optimizers.GradientDescent
-
Gets the details of this optimizer.
- getDetails() - Method in class com.jml.optimizers.Momentum
-
Gets the details of this optimizer.
- getDetails() - Method in class com.jml.optimizers.Optimizer
-
Gets the details of this optimizer.
- getInDim() - Method in interface com.jml.neural_network.layers.BaseLayer
-
Gets the input dimension of this layer.
- getInDim() - Method in class com.jml.neural_network.layers.Dense
-
Gets the input dimension of this layer.
- getInDim() - Method in class com.jml.neural_network.layers.Dropout
-
Gets the input dimension of this layer.
- getInDim() - Method in class com.jml.neural_network.layers.Linear
-
Gets the input dimension of this layer.
- getLearningRate() - Method in class com.jml.optimizers.Optimizer
-
Gets the learning rate for this optimizer.
- getLossHist() - Method in class com.jml.classifiers.LogisticRegression
-
Gets the loss history from the optimizer.
- getLossHist() - Method in class com.jml.linear_models.LinearRegressionSGD
-
Gets the loss history from training.
- getLossHist() - Method in class com.jml.linear_models.MultipleLinearRegressionSGD
-
Gets the loss history from the optimizer.
- getLossHist() - Method in class com.jml.linear_models.PolynomialRegressionSGD
-
Gets the loss history from training.
- getLossHist() - Method in class com.jml.neural_network.NeuralNetwork
- getName() - Method in interface com.jml.neural_network.activations.ActivationFunction
-
Gets the name of the activation function.
- getName() - Method in class com.jml.neural_network.activations.Linear
-
Gets the name of the activation function.
- getName() - Method in class com.jml.neural_network.activations.Relu
-
Gets the name of the activation function.
- getName() - Method in class com.jml.neural_network.activations.Sigmoid
-
Gets the name of the activation function.
- getName() - Method in class com.jml.neural_network.activations.Softmax
-
Gets the name of the activation function.
- getName() - Method in class com.jml.neural_network.activations.Tanh
-
Gets the name of the activation function.
- getOutDim() - Method in interface com.jml.neural_network.layers.BaseLayer
-
Gets the output dimension of this layer.
- getOutDim() - Method in class com.jml.neural_network.layers.Dense
-
Gets the output dimension of this layer.
- getOutDim() - Method in class com.jml.neural_network.layers.Dropout
-
Gets the output dimension of this layer.
- getOutDim() - Method in class com.jml.neural_network.layers.Linear
-
Gets the output dimension of this layer.
- getParams() - Method in class com.jml.classifiers.KNearestNeighbors
-
Gets the parameters of the trained model.
- getParams() - Method in class com.jml.classifiers.LogisticRegression
-
Gets the parameters of the trained model.
- getParams() - Method in class com.jml.core.Model
-
Gets the parameters of the trained model.
- getParams() - Method in class com.jml.linear_models.MultipleLinearRegression
-
Gets the parameters of the trained model.
- getParams() - Method in class com.jml.linear_models.Perceptron
-
Gets the parameters of the trained model.
- getParams() - Method in class com.jml.linear_models.PolynomialRegression
-
Gets the parameters of the trained model.
- getParams() - Method in interface com.jml.neural_network.layers.BaseLayer
-
Gets the trainable parameters of this layer in an array.
- getParams() - Method in class com.jml.neural_network.layers.Dense
-
Gets the trainable parameters for this layer as an array of matrices.
- getParams() - Method in class com.jml.neural_network.layers.Linear
-
Gets the trainable parameters for this layer as an array of matrices.
- getParams() - Method in interface com.jml.neural_network.layers.TrainableLayer
-
Gets the trainable parameters for this layer as an array of matrices.
- getParams() - Method in class com.jml.neural_network.NeuralNetwork
-
Gets the parameters of the trained model.
- getUpdates() - Method in interface com.jml.neural_network.layers.BaseLayer
-
Gets the update matrices for the trainable parameters of this layer.
- getUpdates() - Method in class com.jml.neural_network.layers.Dense
-
Gets the update matrices for parameters of this layer.
- getUpdates() - Method in class com.jml.neural_network.layers.Linear
-
Gets the update matrices for parameters of this layer.
- getUpdates() - Method in interface com.jml.neural_network.layers.TrainableLayer
-
Gets the update matrices for parameters of this layer.
- GlorotNormal - Class in com.jml.neural_network.layers.initilizers
-
{
layer
parameter initializer to produce random values from a truncated normal distribution with standard deviation std = sqrt(2 / (fanIn + fanOut)) and mean of 0 where fanIn is the input dimension for the layer and fanOut is the output dimension for the layer. - GlorotNormal() - Constructor for class com.jml.neural_network.layers.initilizers.GlorotNormal
-
Creates a GlorotNormal initializer with specified seed.
- GlorotNormal(long) - Constructor for class com.jml.neural_network.layers.initilizers.GlorotNormal
-
Creates a GlorotNormal initializer with specified seed.
- GlorotUniform - Class in com.jml.neural_network.layers.initilizers
-
layer
parameter initializer to produce random values from a clipped uniform distribution in [-lim, lim] where lim = sqrt(6 / (fanIn + fanOut)), fanIn is the input dimension for the layer, and fanOut is the output dimension for the layer. - GlorotUniform() - Constructor for class com.jml.neural_network.layers.initilizers.GlorotUniform
-
Creates a GlorotNormal initializer with specified seed.
- GlorotUniform(long) - Constructor for class com.jml.neural_network.layers.initilizers.GlorotUniform
-
Creates a GlorotNormal initializer with specified seed.
- GradientDescent - Class in com.jml.optimizers
-
Vanilla gradient descent optimizer.
- GradientDescent(double) - Constructor for class com.jml.optimizers.GradientDescent
-
Creates a vanilla gradient descent optimizer with the specified learning rate.
All Classes|All Packages|Constant Field Values