Index

A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values

G

genRandBoolean(double) - Static method in class com.jml.core.Stats
Generates a random boolean with a specified probability of being true.
getBlock() - Method in class com.jml.core.Block
Gets the markup format of the block.
getDetails() - Method in interface com.jml.neural_network.layers.BaseLayer
Constructs a string containing this all details of the model pertinent for saving the model to a file.
getDetails() - Method in class com.jml.neural_network.layers.Dense
Constructs a string containing this all details of the model pertinent for saving the model to a file.
getDetails() - Method in class com.jml.neural_network.layers.Dropout
Constructs a string containing this all details of the model pertinent for saving the model to a file.
getDetails() - Method in class com.jml.neural_network.layers.Linear
Constructs a string containing this all details of the model pertinent for saving the model to a file.
getDetails() - Method in class com.jml.optimizers.Adam
Gets the details of this optimizer.
getDetails() - Method in class com.jml.optimizers.GradientDescent
Gets the details of this optimizer.
getDetails() - Method in class com.jml.optimizers.Momentum
Gets the details of this optimizer.
getDetails() - Method in class com.jml.optimizers.Optimizer
Gets the details of this optimizer.
getInDim() - Method in interface com.jml.neural_network.layers.BaseLayer
Gets the input dimension of this layer.
getInDim() - Method in class com.jml.neural_network.layers.Dense
Gets the input dimension of this layer.
getInDim() - Method in class com.jml.neural_network.layers.Dropout
Gets the input dimension of this layer.
getInDim() - Method in class com.jml.neural_network.layers.Linear
Gets the input dimension of this layer.
getLearningRate() - Method in class com.jml.optimizers.Optimizer
Gets the learning rate for this optimizer.
getLossHist() - Method in class com.jml.classifiers.LogisticRegression
Gets the loss history from the optimizer.
getLossHist() - Method in class com.jml.linear_models.LinearRegressionSGD
Gets the loss history from training.
getLossHist() - Method in class com.jml.linear_models.MultipleLinearRegressionSGD
Gets the loss history from the optimizer.
getLossHist() - Method in class com.jml.linear_models.PolynomialRegressionSGD
Gets the loss history from training.
getLossHist() - Method in class com.jml.neural_network.NeuralNetwork
 
getName() - Method in interface com.jml.neural_network.activations.ActivationFunction
Gets the name of the activation function.
getName() - Method in class com.jml.neural_network.activations.Linear
Gets the name of the activation function.
getName() - Method in class com.jml.neural_network.activations.Relu
Gets the name of the activation function.
getName() - Method in class com.jml.neural_network.activations.Sigmoid
Gets the name of the activation function.
getName() - Method in class com.jml.neural_network.activations.Softmax
Gets the name of the activation function.
getName() - Method in class com.jml.neural_network.activations.Tanh
Gets the name of the activation function.
getOutDim() - Method in interface com.jml.neural_network.layers.BaseLayer
Gets the output dimension of this layer.
getOutDim() - Method in class com.jml.neural_network.layers.Dense
Gets the output dimension of this layer.
getOutDim() - Method in class com.jml.neural_network.layers.Dropout
Gets the output dimension of this layer.
getOutDim() - Method in class com.jml.neural_network.layers.Linear
Gets the output dimension of this layer.
getParams() - Method in class com.jml.classifiers.KNearestNeighbors
Gets the parameters of the trained model.
getParams() - Method in class com.jml.classifiers.LogisticRegression
Gets the parameters of the trained model.
getParams() - Method in class com.jml.core.Model
Gets the parameters of the trained model.
getParams() - Method in class com.jml.linear_models.MultipleLinearRegression
Gets the parameters of the trained model.
getParams() - Method in class com.jml.linear_models.Perceptron
Gets the parameters of the trained model.
getParams() - Method in class com.jml.linear_models.PolynomialRegression
Gets the parameters of the trained model.
getParams() - Method in interface com.jml.neural_network.layers.BaseLayer
Gets the trainable parameters of this layer in an array.
getParams() - Method in class com.jml.neural_network.layers.Dense
Gets the trainable parameters for this layer as an array of matrices.
getParams() - Method in class com.jml.neural_network.layers.Linear
Gets the trainable parameters for this layer as an array of matrices.
getParams() - Method in interface com.jml.neural_network.layers.TrainableLayer
Gets the trainable parameters for this layer as an array of matrices.
getParams() - Method in class com.jml.neural_network.NeuralNetwork
Gets the parameters of the trained model.
getUpdates() - Method in interface com.jml.neural_network.layers.BaseLayer
Gets the update matrices for the trainable parameters of this layer.
getUpdates() - Method in class com.jml.neural_network.layers.Dense
Gets the update matrices for parameters of this layer.
getUpdates() - Method in class com.jml.neural_network.layers.Linear
Gets the update matrices for parameters of this layer.
getUpdates() - Method in interface com.jml.neural_network.layers.TrainableLayer
Gets the update matrices for parameters of this layer.
GlorotNormal - Class in com.jml.neural_network.layers.initilizers
{layer parameter initializer to produce random values from a truncated normal distribution with standard deviation std = sqrt(2 / (fanIn + fanOut)) and mean of 0 where fanIn is the input dimension for the layer and fanOut is the output dimension for the layer.
GlorotNormal() - Constructor for class com.jml.neural_network.layers.initilizers.GlorotNormal
Creates a GlorotNormal initializer with specified seed.
GlorotNormal(long) - Constructor for class com.jml.neural_network.layers.initilizers.GlorotNormal
Creates a GlorotNormal initializer with specified seed.
GlorotUniform - Class in com.jml.neural_network.layers.initilizers
layer parameter initializer to produce random values from a clipped uniform distribution in [-lim, lim] where lim = sqrt(6 / (fanIn + fanOut)), fanIn is the input dimension for the layer, and fanOut is the output dimension for the layer.
GlorotUniform() - Constructor for class com.jml.neural_network.layers.initilizers.GlorotUniform
Creates a GlorotNormal initializer with specified seed.
GlorotUniform(long) - Constructor for class com.jml.neural_network.layers.initilizers.GlorotUniform
Creates a GlorotNormal initializer with specified seed.
GradientDescent - Class in com.jml.optimizers
Vanilla gradient descent optimizer.
GradientDescent(double) - Constructor for class com.jml.optimizers.GradientDescent
Creates a vanilla gradient descent optimizer with the specified learning rate.
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes|All Packages|Constant Field Values